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The global mantle flow problem
A multiscale problem, globally coupled, locally high resolution

(Visualization by L. Alisic)
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Main results summary
Two essential components for scalable mantle flow solvers:

I. Efficient methods/algorithms

I high-order finite elements
I adaptive meshes, resolving

viscosity variations
I inexact Newton-Krylov method
I H−1-norm for velocity comp.

for Newton line search
I multigrid preconditioners for

elliptic operators
I BFBT/LSC type pressure

Schur complement
preconditioner

II. Scalable parallel implementation
I matrix-free stiffness/mass

application
I tensor product structure of FE

shape functions
I octree algorithms for handling

adaptive mesh in parallel
I high-order GMG with

linear AMG as coarse solve
I AMG on sparsified matrix using

trilinear FE at high-order nodes
I scalability up to 16384 cores
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Main results covered in this talk
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Design of a plate tectonics & mantle convection
benchmark problem



“Nonlinear Global Mantle Flow Using High-Order GMG on Adaptive Meshes” by Johann Rudi

Plate tectonics & mantle convection benchmark problem
Setup and major challenges

1. Curved slice domain
2. Temperature of lithosphere derived from half-space cooling model
3. Viscosity depends exponentially on temperature
 contrast of > 1015  viscosity bounds s.t. µmax/µmin ≤ 106

4. Viscosity contrast with bounds:
lithosphere ×10−4

−−−−→ asthenosphere ×102
−−−→ lower mantle
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Plate tectonics & mantle convection benchmark problem
lithosphere ×10−4

−−−−→ asthenosphere ×102
−−−→ lower mantle
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Plate tectonics & mantle convection benchmark problem
Setup and major challenges

1. Curved slice domain
2. Temperature of lithosphere derived from half-space cooling model
3. Viscosity depends exponentially on temperature
 contrast of > 1015  viscosity bounds s.t. µmax/µmin ≤ 106

4. Viscosity contrast with bounds:
lithosphere ×10−4

−−−−→ asthenosphere ×102
−−−→ lower mantle

5. Decouple plates by weak zone factor at plate boundaries;
gives 106 viscosity contrast and sharp gradients
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Plate tectonics & mantle convection benchmark problem
decouple plates by weak zone factor at plate boundaries
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Plate tectonics & mantle convection benchmark problem
Setup and major challenges

1. Curved slice domain
2. Temperature of lithosphere derived from half-space cooling model
3. Viscosity depends exponentially on temperature
 contrast of > 1015  viscosity bounds s.t. µmax/µmin ≤ 106

4. Viscosity contrast with bounds:
lithosphere ×10−4

−−−−→ asthenosphere ×102
−−−→ lower mantle

5. Decouple plates by weak zone factor at plate boundaries;
gives 106 viscosity contrast and sharp gradients

6. No outflow boundary conditions and right-hand side
7. Highly nonlinear rheology: strain rate dependent viscosity (power

law), yielding at high stresses
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Plate tectonics & mantle convection benchmark problem
strain rate dependent viscosity, yielding at high stresses
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The nonlinear Stokes system
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Nonlinear Stokes model PDE for mantle flow with plates
Rock in the mantle moves like a viscous, incompressible fluid on time
scales of millions of years. From conservation of mass and momentum,
we obtain the nonlinear Stokes system for velocity and pressure:−∇ ·

[
µ(T ,u)(∇u +∇u>)

]
+∇p = Ra (T − T0)er

∇ · u = 0

Variables:
I T . . . temperature
I u . . . velocity
I p . . . pressure

Parameters:
I µ(T ,u) . . . viscosity
I T0 . . . background temperature
I Ra ∼ 106 − 109 . . . Rayleigh number
I er . . . radial direction
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Rheology
Nonlinear viscosity:

viscosity = upper bound → weak zone → yielding → lower bound

µ(T ,u) = max
(
µmin,min

(
τyield
2ε̇(u) ,w min

(
µmax, a(T ) ε̇(u)

1−n
n
)))

Given:
I a(T ) . . . temperature dependent viscosity factor
I w(x) . . . weak zone factor
I 0 < µmin < µmax <∞ . . . viscosity bounds
I 0 < τyield . . . yielding stress
I n ≈ 3 . . . stress exponent

Definitions:
I ∇su := 1

2(∇u +∇u>),
I IIε̇(u) := 1

2(∇su : ∇su), ε̇(u) :=
√

IIε̇(u)
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Linearization: The Newton step
Nonlinear Stokes PDE:{−∇ · [2µ(ε̇)∇su] +∇p = f

∇ · u = 0

1st order variation w.r.t. (u, p) to get Newton step (ũ, p̃):
−∇ ·

[
2
(
µ(ε̇)I + ε̇

∂µ(ε̇)
∂ε̇

∇su ⊗∇su
‖∇su‖2F

)
∇sũ

]
+∇p̃ = −rmom

∇ · ũ = −rmass

Q: Is 4th order tensor term bounded?. . . yes
Q: Is the viscosity continuously differentiable w.r.t. ε̇ ?. . . no
Newton update:

(unew, pnew) = (u, p) + α(ũ, p̃)

Q: How does nonlinearity affect line search for step length α?
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Regularizing the rheology for Newton’s method
Idea: Construct continuously differentiable ε̇ 7→ τ relationship
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Regularizing the rheology for Newton’s method
Idea: Construct continuously differentiable ε̇ 7→ τ relationship
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Regularizing the rheology for Newton’s method
Original viscosity:

µ(T , ε̇) = max
(
µmin,min

(
τyield

2ε̇ ,w min
(
µmax, a(T ) ε̇

1−n
n
)))

I Modify upper bound:

find shift d s.t. τd(ε̇) :=
{

2µmaxε̇, µmax < µ

2a(T )(ε̇− d)
1
n , otherwise

is C 1

I Modify lower bound:

instead of cut-off: µ← max(µmin, µ), use sum: µ← µ+ µmin

This lower bound regularization is consistent for power law and
yielding viscosity!

Regularized viscosity:

µreg(T , ε̇) = min
(
τyield

2ε̇ ,w min
(
µmax, a(T ) (ε̇− d)

1
n ε̇−1

))
+ µmin
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The discrete Stokes system
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Finite element discretization of the Stokes system

{−∇ · [2µ∇su] +∇p = f
∇ · u = 0

discretize−−−−−→
[
A B>
B 0

] [
u
p

]
=
[

f
0

]

I Hexahedral meshes with non-conforming elements;
algebraic constraints on element faces with hanging nodes enforce
continuity of the global velocity basis functions

I High-order finite element shape functions
I Inf-sup stable velocity-pressure pairings: Qk × Pdisc

k−1 with 2 ≤ k
I Locally mass conservative due to discontinuous pressure space
I Fast, matrix-free application of stiffness and mass matrices
I Hexahedral elements allow for the basis functions derivatives to be

calculated efficiently using tensor products
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Linear solver: Preconditioned Krylov method

Fully coupled iterative solver: GMRES with right preconditioning with an
upper triangular block matrix[

A B>
B 0

] [
Ã B>
0 S̃

]−1 [
u′
p′

]
=
[

f
0

]

Next, we seek:
I Approximation for viscous stress block: Ã−1 ≈ A−1

I Approximation for Schur complement: S̃−1 ≈ S−1 := (BA−1B>)−1



“Nonlinear Global Mantle Flow Using High-Order GMG on Adaptive Meshes” by Johann Rudi

Viscous stress block & Schur complement block
preconditioner for Krylov methods
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Hybrid geometric-algebraic multigrid for Ã−1

I Finest level: adaptively refined
mesh

I Repartition coarser meshes for
load-balancing

I Repartition onto fewer cores for
small meshes

I AMG (PETSc GAMG) is only
used for small problems on
small core counts

Multigrid hierarchy

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4

direct solve

I High-order L2-projection of viscosity onto coarser levels (equal to
discretization order)

I AMG uses sparsified matrix with trilinear FE at high-order nodes
I High-order GMG smoothing & linear AMG smoothing at transition
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Hybrid geometric-algebraic multigrid for Ã−1

I GMG smoother: Chebyshev
accelerated Jacobi (PETSc)
with matrix-free high-order
stiffness apply and assembled
(point-block) diagonal of
high-order stiffness matrix

I AMG smoother: Chebyshev
accelerated Jacobi (PETSc)
with assembled linear matrix at
high-order nodes

Multigrid hierarchy

GMG
high-
order
linear

0 0

1 1

2 2

AMG2 2

3 3

4

direct solve

I GMG restriction & interpolation: High-order L2-projection;
restriction and interpolation operators are adjoints of each other in
L2 sense
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BFBT/LSC methods for Schur complement S̃−1

Goal: Effective and robust preconditioning of the Schur complement in
Stokes systems with high viscosity variations.
Use an improved version of BFBT / Least Squares Commutator methods

S̃−1 = (BD−1B>)−1(BD−1AD−1B>)(BD−1B>)−1, D := diag(A)

based on [May, Moresi, 2008].
Derived from the solution of the least squares problem:

min
X

∥∥∥AD−1B>ej −B>Xej
∥∥∥2

D−1
for all j

In practice, approximate (BD−1B>)−1 by AMG V-cycles with
Chebyshev accelerated Jacobi smoother (PETSc).
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Solver robustness
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Solver robustness w.r.t. weak zone factor

Vary only the weak zone factor:
wmin = 10−4, 10−5, 10−6
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Solver robustness w.r.t. weak zone factor
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Solver robustness w.r.t. weak zone thickness

Vary only the weak zone thickness:
10, 5, 2 km
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Solver robustness w.r.t. weak zone thickness
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Solver h-dependence and p-dependence
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Solver h-dependence
Dependence of the number of Krylov iterations on the mesh resolution

mesh sizes: 224788, 661980, 1565232; quadratic FE for velocity
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Solver p-dependence
Dependence of the number of Krylov iterations on the discretization order

FE orders for velocity discretization: 2, 3, 4, 5, 6; mesh fixed
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Parallel scalability of GMG



“Nonlinear Global Mantle Flow Using High-Order GMG on Adaptive Meshes” by Johann Rudi

Computing environment
Resources provided by the Texas Advanced Computing Center (TACC)

Stampede supercomputer
I 16 CPU cores per node,

2 × 8 core Intel Xeon E5-2680
I 32GB main memory per node,

8 × 4GB DDR3-1600MHz
I 6400 nodes, 102,400 cores total
I InfiniBand FDR network

Compiler and libraries
I Compiler: Intel 14.0.1.106
I MPI: MVAPICH2 2.0b
I Linear algebra library: PETSc 3.4.3
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Scalability problem: Elliptic solve on adaptive Earth mesh

I solve for velocity: Au = f
I adaptive mesh (p4est library)

with up to ∼ 0.5 km resolution
I quadratic FE velocity discretization
I weak zone factor 10−5, thickness 20 km
I viscosity variation is as high as in physically realistic simulation
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Weak scaling for Au = f on adaptive Earth mesh

#cores #elems vel DOF #levels
GMG, AMG

setup
GMG, AMG, total

solve total #iter

2048 31.4e6 640.1e6 7, 4 13.2, 14.4, 27.7 2348.6 2421.6 392
4096 56.8e6 1157.7e6 7, 4 13.3, 37.2, 50.5 2585.4 2702.0 389
8192 120.5e6 2440.1e6 8, 4 18.9, 43.0, 61.9 2241.2 2377.6 334

16384 260.7e6 5374.9e6 8, 4 34.7, 98.0, 132.7 2220.3 2488.6 275

Algorithmic & implementation
scalability: T/(N/P)
Implementation scalability:
T/(N/P)/K
where
I T . . . setup + solve time
I N . . . velocity DOF
I P . . . #cores
I K . . . #iterations

2048 4096 8192 16384
0

0.5

1

1.5

1

1.23

1.02
0.941

1.24 1.19
1.35

number of cores

Weak scaling of setup & solve (relative to 2048 cores)

T/(N/P)
T/(N/P)/K
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Strong scaling for Au = f on adaptive Earth mesh
Problem size: N = 640.1e6 velocity DOF

#cores setup
GMG, AMG, total

solve total #iter

2048 13.2, 14.4, 27.7 2348.6 2421.6 392
4096 9.9, 27.0, 36.9 1492.1 1564.7 400
8192 11.3, 41.6, 52.8 864.8 947.1 404

16384 14.9, 80.7, 95.6 621.0 746.1 402
2048 4096 8192 16384

0

0.5

1
1

0.8
0.7

0.48

number of cores

Strong scaling of solve (efficiency rel. to 2048)

Problem size: N = 1157.7e6 velocity DOF

#cores setup
GMG, AMG, total

solve total #iter

4096 13.3, 37.2, 50.5 2585.4 2702.0 389
8192 12.4, 65.6, 77.9 1498.5 1621.9 386

16384 13.7, 99,4, 113.2 989.6 1137.9 389

2048 4096 8192 16384
0

0.5

1

0

1
0.86 0.86

number of cores

Strong scaling of solve (efficiency rel. to 4096)
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Nonlinear solver convergence
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Nonlinear convergence for slice problem
I Weak zone factor 10−5, 10 km thickness
I Yielding at high stresses
I Adaptive mesh refinement after the first two Newton steps
I Residual measured in H−1-norm for backtracking line search;

important to not have overly conservative backtracking steps � 1
(requires 3 scalar constant coefficient Laplace solves)

I Complexity: 33M velocity & pressure DOF, 1024 processor cores,
39 min total runtime
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Inexact Newton-Krylov convergence for slice problem
Reduction of H −1-norm of velocity residual and Newton step length
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Newton convergence (complexity: N=3.25e+07, P=1024, T=39min, T/P/N=6.97e−08sec)
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Inexact Newton-Krylov convergence for slice problem
Reduction of l2-norm of residual at Newton and Krylov iterations
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Nonlinear convergence for Earth problem

I Weak zone factor 10−4,
100 km thickness

I Yielding at high stresses
I AMR after the first four

Newton steps
I Residual measured in

H−1-norm for
backtracking line search

I Complexity: 642M
velocity & pressure DOF,
4096 processor cores,
473 min total runtime
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Inexact Newton-Krylov convergence for Earth problem
Reduction of H −1-norm of velocity residual and Newton step length
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Newton convergence (complexity: N=6.42e+08, P=4096, T=473min, T/P/N=1.08e−08sec)
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Inexact Newton-Krylov convergence for Earth problem
Reduction of l2-norm of residual at Newton and Krylov iterations
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Thank you
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Main results summary
Two essential components for scalable mantle flow solvers:

I. Efficient methods/algorithms

I high-order finite elements
I adaptive meshes, resolving

viscosity variations
I inexact Newton-Krylov method
I H−1-norm for velocity comp.

for Newton line search
I multigrid preconditioners for

elliptic operators
I BFBT/LSC type pressure

Schur complement
preconditioner

II. Scalable parallel implementation
I matrix-free stiffness/mass

application
I tensor product structure of FE

shape functions
I octree algorithms for handling

adaptive mesh in parallel
I high-order GMG with

linear AMG as coarse solve
I AMG on sparsified matrix using

trilinear FE at high-order nodes
I scalability up to 16384 cores
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BFBT/LSC methods for Schur complement
preconditioning
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Review: BFBT/LSC methods for Schur complement S̃−1

BFBT method [Elman, 1999]: pseudoinverse

S̃−1 = (BA−1B>)+ = (BB>)−1(BAB>)(BB>)−1

Least Squares Commutators (LSC) [Elman, et al., 2006]:
Find commutator matrix X s.t. (AB> −B>X) ≈ 0, by solving the least
squares problem:

Find columns xj of X s.t. min
xj

∥∥∥[AB>]j −B>xj
∥∥∥2

2

⇒ X = (BB>)−1(BAB>)

(AB> −B>X) ≈ 0 ⇒ (BA−1B>)−1 ≈ (BB>)−1(BAB>)(BB>)−1

LSC gives same result for S̃−1 as pseudoinverse.
Q: Does this work for FE discretizations?. . .

no
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Review: BFBT/LSC methods for Schur complement S̃−1

Diagonally scaled BFBT method [Elman, et al., 2006]:

Find columns xj of X s.t. min
xj

∥∥∥M−1/2
1 [AM−1

2 B>]j −M−1/2
1 B>xj

∥∥∥2

2

⇒ X = (BM−1
1 B>)−1(BM−1

1 AM−1
2 B>)

⇒ S̃−1 = (BM−1
1 B>)−1(BM−1

1 AM−1
2 B>)(BM−1

2 B>)−1

Proposed scaling: For FE, use “diagonalized” velocity mass matrix,

diagonal: M1 = M2 = diag(Mu) or lumped: M1 = M2 = M̃u

Since BM−1
1 B> can be understood as a Laplace operator for the

pressure, approximate (BM−1
1 B>)−1 by a multigrid V-cycle.

Q: Is mass scaled BFBT effective for high viscosity variations?. . .

no
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Review: BFBT/LSC methods for Schur complement S̃−1

BFBT for scaled Stokes systems that arise in geodynamics
[May, Moresi, 2008]:[

D−1/2
u 0
0 D−1/2

p

] [
A B>
B 0

] [
D−1/2

u 0
0 D−1/2

p

]
Then the standard BFBT method yields its scaled version,

⇒ S̃−1 = (BD−1
u B>)−1(BD−1

u AD−1
u B>)(BD−1

u B>)−1

Proposed scaling: heuristic, motivated by scaling of dimensional systems

[Du ]i,i = max
j
|[A]i,j |

Q: Is BFBT with this scaling effective for high viscosity variations?. . .

yes
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New view on BFBT/LSC methods
Let C be symm. pos. def. and let D be arbitrary,

Find X s.t. min
X

∥∥∥AD−1B>ej −B>Xej
∥∥∥2

C−1
for all j

⇒ X = (BC−1B>)−1(BC−1AD−1B>)

And we have a C−1-orthogonal projection, i.e., the residual satisfies〈
B>ei , (AD−1B> −B>X)ej

〉
C−1

= 0 for all i, j,

therefore (
AD−1B> −B>X

)
ej ⊥C−1 Ran(B>) for all j
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New view on BFBT/LSC methods
Goal: Effective and robust preconditioning of the Schur complement in
Stokes systems with high viscosity variations
Recall: Condition for optimal preconditioning (BÃ−1B>)S̃−1 = I.
By choosing C = Ã, we obtain equivalence between orthogonality and
the condition for optimal preconditioning:〈

B>ei , (AD−1B> −B>X)ej
〉

Ã−1
= 0 ∀i, j ⇔ S̃ = BÃ−1B>

Choices of C,D that are computationally feasible are limited.
Our choice: C = D := diag(A), thus

S̃−1 = (BD−1B>)−1(BD−1AD−1B>)(BD−1B>)−1

Approximate (BD−1B>)−1 with AMG V-cycles (PETSc GAMG).
Q: Is this S̃−1 robust at high viscosity variations?. . . see results
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Choices of C,D that are computationally feasible are limited.
Our choice: C = D := diag(A), thus

S̃−1 = (BD−1B>)−1(BD−1AD−1B>)(BD−1B>)−1

Approximate (BD−1B>)−1 with AMG V-cycles (PETSc GAMG).
Q: Is this S̃−1 robust at high viscosity variations?. . . see results


	Design of a plate tectonics & mantle convection benchmark problem
	The nonlinear Stokes system
	The discrete Stokes system
	Viscous stress block & Schur complement block preconditioner for Krylov methods
	Solver robustness
	Solver h-dependence and p-dependence
	Parallel scalability of GMG
	Nonlinear solver convergence

